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Parity predicts biological age 
acceleration in post‑menopausal, 
but not pre‑menopausal, women
Talia N. Shirazi1*, Waylon J. Hastings2, Asher Y. Rosinger1,2 & Calen P. Ryan3

Understanding factors contributing to variation in ‘biological age’ is essential to understanding 
variation in susceptibility to disease and functional decline. One factor that could accelerate biological 
aging in women is reproduction. Pregnancy is characterized by extensive, energetically-costly changes 
across numerous physiological systems. These ‘costs of reproduction’ may accumulate with each 
pregnancy, accelerating biological aging. Despite evidence for costs of reproduction using molecular 
and demographic measures, it is unknown whether parity is linked to commonly-used clinical 
measures of biological aging. We use data collected between 1999 and 2010 from the National Health 
and Nutrition Examination Survey (n = 4418) to test whether parity (number of live births) predicted 
four previously-validated composite measures of biological age and system integrity: Levine Method, 
homeostatic dysregulation, Klemera–Doubal method biological age, and allostatic load. Parity 
exhibited a U-shaped relationship with accelerated biological aging when controlling for chronological 
age, lifestyle, health-related, and demographic factors in post-menopausal, but not pre-menopausal, 
women, with biological age acceleration being lowest among post-menopausal women reporting 
between three and four live births. Our findings suggest a link between reproductive function and 
physiological dysregulation, and allude to possible compensatory mechanisms that buffer the effects 
of reproductive function on physiological dysregulation during a woman’s reproductive lifespan. 
Future work should continue to investigate links between parity, menopausal status, and biological 
age using targeted physiological measures and longitudinal studies.

Chronological age is a leading predictor of mortality, morbidity, and functional decline1,2. Despite the strik-
ing association between chronological age, lifespan, and health, individuals vary considerably in their rate of 
functional decline3. This variation—attributed to differences in the biological rate of deterioration or repair—is 
referred to as ‘biological age’, and is thought to reflect the cumulative effect of environmental exposures in com-
bination with underlying genetic variation. Various proximate mechanisms have been proposed to modulate 
biological age acceleration, including insulin signaling4, oxidative stress5, inflammation6, epigenetic changes7, 
and telomere shortening8. Understanding the environmental, behavioral, and physiological factors that influence 
biological aging may inform policies and interventions that could help to mitigate their effects, thereby extending 
healthspan. Such policies and interventions will become increasingly important as the proportion of the global 
population over age 60 is expected to increase dramatically over the next 30 years9.

Environmental factors found to accelerate biological aging and functional decline include smoking10, obesity10, 
socioeconomic status11, and psychosocial stress12. Another lifestyle factor that may accelerate biological aging 
in women specifically is reproduction13,14. Reproduction in women is an energetically costly process, and is 
characterized by extensive changes in both form and function across numerous anatomical and physiological 
systems15. Pregnancy and breastfeeding are accompanied by shifts in immune function16–18, energy metabolism 
and storage19,20, blood pressure and volume21,22, and hormone levels and receptor expression23. Evolutionary 
theory predicts that these changes create functional or energetic constraints to somatic maintenance and repair, 
leading to accelerated biological age—a tradeoff referred to as ‘costs of reproduction’24,25.

Consistent with costs of reproduction in women, ever-parity has been linked to mortality from diabetes, 
cancer of the uterine cervix, gallbladder disease, kidney disease, hypertension, and all-cause mortality26–29. 
Similarly, women who give birth to more children are at higher risk of developing obesity, diabetes, hyperten-
sion and cardiovascular disease (CVD)30,31, as well as age-corrected all-cause mortality28,32,33, mortality related to 
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cardiovascular disease34 and mortality related to kidney disease35. Notably, studies with the largest sample sizes 
(and presumably, the greatest statistical power) often reveal that parity exhibits a U-shaped association with all-
cause mortality32,33 and CVD34, with lowest all-cause mortality and CVD rates observed at intermediate parity. 
The number of children or pregnancies has also been linked to multiple measures of cellular aging, including 
DNA damage and oxidative stress36, telomere length13,14, and DNA methylation age14,37. While most of these 
studies examine associations within Western populations, some evidence supporting costs of reproduction is 
seen in non-Western populations as well14,36.

Cellular measures of biological age such as telomere length and DNA methylation age may provide insights 
into the molecular processes linking reproduction to mortality and other health outcomes7,38, and may eventually 
serve as early indicators of the costs of reproduction in health and aging. However, ‘aging’ may refer to a wide 
range of processes that may occur at different times or at different speeds. For example, cellular measures of 
biological age that examine mitotic (e.g., telomere length) and non-mitotic (e.g., DNA methylation age) processes 
are often weakly correlated14,39. Similarly, both telomere length and DNA methylation age are poorly associated 
with measures of biological age implemented at the clinical level40–43. Thus, it has been suggested that different 
measures of cellular aging and cumulative system dysregulation index fundamentally different components of 
the aging process.

Clinical measures of biological age quantify changes in physiological integrity by combining information 
from multiple clinical biomarkers that collectively assess the function of major organ systems throughout the 
body. Such measures may be particularly relevant in light of the many physiological, immunological, and endo-
crinological changes that accompany reproduction in women44. Four composites of system integrity have been 
used to operationalize biological age and cumulative system dysregulation within the context of large-scale 
epidemiological studies in the United States: Homeostatic Dysregulation (HD)45, Levine Method Biological Age 
(LM)46,47, the Klemera–Doubal Method Biological Age (KDM)46,48, and allostatic load (AL)49. Previous work 
using a nationally representative sample of adults in the US from the National Health and Nutrition Examination 
Survey has found that HD, LM, KDM, and AL exhibit robust associations with physical functioning, cognition, 
hearing and vision, and with self-reports of health and functional disability11,50. Other population-based stud-
ies have found similar links between AL and both objective and subjective markers of physical functioning and 
general health51. Clinically-based measures may therefore provide an affordable and accessible alternative to 
cell-based measures for measuring systemic deterioration tied to costs of reproduction in women.

Here, we present nationally-representative estimates of the effect of parity (operationalized as number of 
live births) on four composites of system integrity indexing biological age and cumulative dysregulation. Using 
cross-sectional epidemiological data collected in the United States between 1999 and 2010, we test whether par-
ity is associated with HD, KDM, LM, and AL while controlling for a range of covariates (e.g., smoking, obesity) 
known to modulate biological age. Although each measure utilizes the same panel of biomarkers, differences in 
scale construction provide a varied, multifactorial approach to the study of costs of reproduction on biological 
aging. Based on findings from the most highly powered prior studies of all-cause mortality and parity, we hypoth-
esized a U-shaped relationship between parity and biological aging. Specifically, we predicted that accelerated 
biological aging would be most apparent in women with the lowest and the highest parity. We also leverage this 
powerful dataset for preliminary tests of whether relationships between parity and biological age are durable, 
such that they persist regardless of time since last birth, or transient, such that the effect of parity on biological 
age decreases as a function of time since last birth. Our findings have significant theoretical implications for our 
understanding of the relationship between parity and health, and of putative tradeoffs between reproductive 
and somatic effort in women.

Materials and methods
Data source.  Data were collected as part of the Centers for Disease Control and Prevention’s National 
Health and Nutrition Examination Survey (NHANES). NHANES uses multistep cluster sampling, and assigns 
participants sample weights based on demographic variables such as self-identified race/ethnicity, age, and edu-
cation; utilization of these sample weights in analyses enables estimation of population-level effects. Continuous 
sampling for NHANES began in 1999, and data is made publicly available in 2-year waves. Details of recruitment 
procedures and study design are available from the Centers for Disease Control and Prevention52. Women sam-
pled between 1999 and 2010 are included in the present analyses, as not all the data necessary to construct the 
biological aging measures (i.e. C-reactive protein) were released for cycles following the 2009–2010 cycle at the 
time of writing this manuscript. Furthermore, women missing information on any covariate included in analyses 
were excluded from the sample. A flowchart detailing sample stratification can be found in Fig. 1, and sample 
demographic information is presented in Table 1.

To assess the representativeness of participants with complete biomarker information, we compared the 
subset of non-pregnant women aged 18–84 with complete biomarker data (n = 5870) to all non-pregnant women 
aged 18–84 in NHANES 1999–2010 (n = 13,929). The two samples were similar in age, ethnicity, educational 
attainment, income, smoking status, menopausal status, and number of live births. However, the sample with 
complete biomarker data was significantly more likely to have ever been pregnant. Comparative demographics 
and associated tests of difference are reported in ESM Table I.

Reproductive health and parity data.  Women completed a computer-assisted questionnaire on their 
reproductive health history. Women reported whether they were currently pregnant, if they have ever been 
pregnant, how many pregnancies resulted in a live birth (if applicable; NHANES items RHD170 and RHQ171), 
whether they had regular periods over the last 12 months, and their reason for not having regular periods over 
the last 12 months (if applicable). As previous work has suggested that current pregnancy modulates certain 
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measures of biological age14, women who self-reported currently being pregnant were excluded from analyses 
(NHANES item RIDEXPRG; n = 1417 out of all women between 18 and 84). Due to the small number of women 
with complete covariate information who reported 8 or more live births (n = 137), these women were excluded 
from analyses. The frequency distribution of live births for women included in our analyses is displayed in Fig. 2. 
NHANES does not collect fine-grained data about pregnancies that do not result in live births, rendering it 
impossible to estimate the length of each pregnancy, and concomitantly, the total physiological cost of each preg-
nancy. Further, approximately 30% of implantations end in natural miscarriage53, making number of recognized 
pregnancies a more imprecise measure of physiological investment in reproduction as compared to number of 
live births. As a result, we chose to use number of live births rather than number of pregnancies. Women who 
reported a prior live birth indicated their age at last live birth across all survey cycles. Because responses to this 
question were bottom-coded at 14 and top-coded at 45 for some cycles, we limited our analysis to women who 
reported an age of last live birth between 15 and 44. Starting in the 2007–2008 cycle, NHANES added a question 
on the number of months since last live birth for women who reported up to a 2 year difference between their 
current age and age of last birth.

Women were categorized as being pre-menopausal if they reported having regular periods over the last 
12 months, if they reported not having regular periods because of a reason other than menopause, or if they were 
younger than 41. A lower limit of 41 was chosen because the average age of menopause in the US is 51, and peri-
menopause may last up to 10 years for some women54. Women were categorized as being post-menopausal if they 
were older than 61, or if they reported not having regular periods over the last 12 months because of menopause.

Biological aging measures.  All composite measures of biological aging were constructed using the fol-
lowing 9 biomarkers: albumin, creatinine, glucose, log-transformed C-reactive protein (CRP), lymphocyte per-
cent, mean cell volume, red blood cell distribution width, alkaline phosphatase, and white blood cell count. 

Figure 1.   Flow chart illustrating sample stratification.
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Table 1.   Sample demographic characteristics (n = 4418), National Health and Nutrition Examination Survey, 
1999–2010. Means, standard errors (SE), and percentages represent nationally-representative estimates based 
on adjustment for complex survey design, survey nonresponse, non-coverage, and complex survey design. 
Unless otherwise noted, p-values reflect tests of difference via t test or Chi-Square as appropriate. † p− values 
from linear regression models adjusted for the following variables: chronological age, body mass index, federal 
income-to-poverty ratio, smoking, education, and self-identified race/ethnicity.

Pre-menopausal (n = 2166) Post-menopausal (n = 2252) p-value

Mean age (SE, range) 34.92 (0.26, 20–61) 63.50 (0.30, 41–84) < 0.001

Mean BMI (SE, range) 28.18 (0.18, 15.6–71.3) 29.04 (0.16, 14.7–57.6) < 0.001

Mean FIPR (SE, range) 2.86 (0.05, 0–5) 3.03 (0.05, 0–5) < 0.001

Smoking (n, %) < 0.001

Never 1367 (59.2%) 1278 (52.6%)

Past 290 (16.4%) 659 (31.1%)

Current 509 (24.4%) 315 (16.3%)

Education (n, %) < 0.001

Less than high school 489 (22.6%) 682 (20.8%)

High school or equivalent 465 (21.9%) 617 (29.9%)

Some college or AA degree 744 (36.4%) 593 (28.7%)

College graduate or above 468 (19.1%) 360 (20.6%)

Race/ethnicity (n, %) < 0.001

Non-Hispanic white 1007 (46.5%) 1309 (58.1%)

Non-Hispanic black 445 (20.5%) 396 (17.6%)

Hispanic 626 (28.9%) 488 (21.7%)

Other 88 (4.1%) 59 (3.3%)

Mean number of live births (SE, range) 1.60 (0.04, 0–7) 2.58 (0.04, 0–7) < 0.001

Ever-parity (n, %) < 0.001

Nulliparous 534 (27.6%) 237 (11.1%)

Parous 1632 (72.4%) 2015 (88.9%)

LM biological age 30.42 (0.28, 4.7–81.3) 59.23 (0.37, 26.0–103.6) 0.002†

LM biological age acceleration − 0.57 (0.13, − 14.1–32.3) − 0.69 (0.18, − 14.7–47.9)

Homeostatic dysregulation 3.09 (0.01, 1.5–4.8) 3.25 (0.01, 1.5–5.3) 0.696†

Homeostatic dysregulation − 0.04 (0.01, − 1.6–1.62) − 0.03 (0.01, − 1.9–2.1)

KDM biological age 31.77 (0.31, 0.6–111.6) 58.16 (0.41, 17.1–147.3)  < 0.001†

KDM biological age acceleration − 1.14 (0.24, − 25.7–83.85) − 0.15 (0.36, − 34.7, 83.2)

Allostatic load 0.21 (0.003, 0.0–0.8) 0.30 (0.01, 0.0–0.9) 0.307†

Allostatic load acceleration − 0.02 (0.004, − 0.3–0.54) − 0.01 (0.01, − 0.4–0.6)

Figure 2.   Distribution of live births for pre-menopausal (orange bars; n = 2166) and post-menopausal (blue 
bars; n = 2252).
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Where appropriate, female participants from NHANES III, for which data collection ran between 1988 and 
1994, were used as the reference sample for the construction of the biological aging measures employed here. 
Serum creatinine values from NHANES III and NHANES 1999–2004 continuous panels were adjusted accord-
ing to published recommendations55.

Homeostatic Dysregulation (HD) is a measure of Mahalanobis distance56, quantifying the deviation of a par-
ticipant’s physiology from a young, healthy reference norm. Following previous work11, we defined our refer-
ence population as non-pregnant women from NHANES III aged 20–30 who were not obese (BMI < 30) and for 
whom all biomarkers fell within the clinically normal range for their age and sex (n = 481, see ESM Tables II–IV). 
Biomarker values from the reference population were standardized and used to compute a biomarker vari-
ance–covariance matrix (ESM Table IV). Biomarker raw means, raw standard deviations, and the standardized-
biomarker variance–covariance matrix are implemented within the Mahalanobis distance equation56 to form the 

homeostatic dysregulation (HD) algorithm: HD =

√

(�v − �µ)
T ∗ S−1 ∗ (�v − �µ) . Here, v is a vector of biomarker 

values for a participant in the analysis sample; u is a vector of biomarker means in the training sample, and S 
is the standardized-biomarker variance–covariance matrix. As HD in the full sample was significantly skewed, 
natural log-transformed HD was used as the outcome variable in all analyses.

Klemera–Doubal Method (KDM) Biological Age is computed using the Klemera–Doubal equation48, which 
extracts information from individual regressions of chronological age onto m biomarkers: 

KDM =

∑m
j=1 (xj−qj)

kj
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+ CA

s2BA
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j=1
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kj
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 . Here, xj is the value of biomarker j measured for an individual in the analytical 

sample and CA is their chronological age. For each biomarker j, the parameters q (intercept), k (slope), and s 
(root mean squared error) are estimated from a regression of chronological age onto the biomarker in the refer-
ence population. sBA is a scaling factor equal to the square root of the variance in chronological age explained 
by the biomarker panel in the reference population46 (Eq. 5). Following previous work46, we formed our reference 
population from non-pregnant women in NHANES III aged 30–75 (n = 5453, see ESM Tables V and VI). An 
individual’s KDM Biological Age corresponds to the average chronological age at which their physiology would 
be observed in the reference population.

Levine Method (LM) Biological Age is computed from a multivariate analysis of mortality hazards using 
NHANES III data46,47. Herein, a multivariate Gompertz model of mortality hazard is fit to the selected biomark-
ers and chronological age to form a predicted hazard of mortality called a “mortality score”. This mortality score 
is converted to a biological age value using a second univariate Gompertz regression of the mortality hazard 
onto chronological age. In this manner, the LM biological age is interpretable as the chronological age at which 
an individual’s physiology-based risk for mortality would be approximately normal in the reference population. 
We applied published parameters from Liu and colleagues’ original work47 to compute LM biological age for 
participants in our sample.

Allostatic Load (AL) is computed as the proportion of biomarker values for which a participant is at risk. In 
accordance with recommendations from a review of AL implementation in NHANES57, we defined risk as resid-
ing within the highest quartile of a given biomarker’s distribution within the sample of nonpregnant women aged 
18–84 with complete biological age biomarker data, excepting albumin for which risk was defined as residing in 
the lowest quartile (n = 5870; ESM Table VII). In this manner, the number of biomarkers for which a participant 
is at risk is divided by the total number of biomarkers in the panel to calculate a final allostatic load score with 
values ranging from 0 to 1.

All four biological aging measures were computed using the same panel of 9 biomarkers. These biomarkers 
were selected based upon their inclusion in the LM biological age algorithm, which utilized machine-learning 
analysis to select the most parsimonious panel of biomarkers for mortality prediction. The use of common 
biomarkers ensures the different measures are indexing the same physiological processes. Differences in the 
analytical approach and statistical operations leading to the final composite measure reflects different approaches 
toward the conceptualization of biological age. For HD, biological age is conceptualized as deviation from an 
ideal physiological state attained in one’s 20s. For KDM, biological age is conceptualized as the average change 
in physiology that occurs with increasing chronological age. Building upon this, LM captures the increased risk 
in mortality that accompanies physiological changes occurring with age. Finally, AL conceptualizes aging as the 
accumulation of changes that become impactful only once they reach a critical threshold. Biomarker and biologi-
cal age summary statistics for the final analytical sample (n = 4418) are provided in ESM Table VIII.

Univariate distributions, bivariate distributions, and Pearson correlations coefficients for age, LM, log-trans-
formed HD, and KDM are displayed in Fig. 3. As expected, all four measures of biological age were significantly 
correlated with chronological age, and all four measures of biological age were significantly correlated with each 
other. 

Covariates.  Self-reported race/ethnicity58, socioeconomic status (SES)59,60, and smoking10 moderate the 
relationship between chronological age and biological aging. Self-reported race/ethnicity was categorized as 
non-Hispanic (NH) white, NH black, Hispanic, and ‘other’ (NHANES item RIDRETH1). SES was indexed by 
educational attainment (NHANES item DMDEDUC2) and federal income-to-poverty ratio (FIPR; NHANES 
item INDFMPIR as calculated per Department of Health and Human Services guidelines). Height and weight 
were measured by an NHANES examiner, and BMI was calculated as weight (kg) divided by height (meters 
squared; NHANES item BMXBMI). As prior work has shown that BMI exhibits a U-shaped curve with negative 
health outcomes61, our models included both linear and quadratic terms for BMI. On the basis of responses to 
a computer-assisted questionnaire on smoking habits, women were classified as never, past, or current smokers. 
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To better isolate the effect of parity and biological age, our primary models controlled for the aforementioned 
covariates.

Statistical analyses.  All analyses were performed in R using the survey package, which supports func-
tionality for analyzing data from complex survey designs. To facilitate accessibility of our methods, we also 
performed all analyses in Stata version 16.1. R scripts, Stata scripts, and data files have been uploaded online and 
can be found at https​://osf.io/b2jft​/.

We followed all NHCS guidelines for the analysis of NHANES data62. As the survey weights relevant to the 
smallest sample subpopulation for which all data are available should be used, we used mobile examination center 
(MEC) weights to adjust for complex survey design, oversampling, non-coverage, day of the week, and survey 
nonresponse to compute nationally representative estimates63,64. Per NHANES analytical guidelines for combin-
ing data across cycles, 12-year MEC weights were calculated using the NHANES-provided variables WTMEC4YR 
and WTMEC2YR as follows: WTMEC12YR = 1

3
∗WTMEC4YR for the 1999− 2000 and 2001− 2002 cycles 

and WTMEC12YR = 1

6
∗WTMEC2YR for all subsequent cycles.

We estimated multiple linear regression models to examine the association of number of live births on biologi-
cal age when controlling for chronological age, self-reported race/ethnicity, educational attainment, FIPR, BMI, 
and smoking. To focus on biological aging, we conducted analyses using versions of each biological age measure 
after adjustment for chronological age, computed as the residuals of each measure regressed only chronological 
age. Following adjustment, biological aging measures were no longer correlated with chronological age (ESM 
Table IX). Separate models were estimated for LM, log-transformed HD, KDM, and AL. Because we estimated 
four regressions (one per outcome measure) for each set of analyses for each analytical subset, statistical signifi-
cance was set to p < 0.0125 (0.05/4)65.

We estimated both linear and quadratic terms for number of live births, as it has been previously suggested 
that the number of live births may exert quadratic, rather than linear, effects on morbidity and mortality32–34. As 
higher values correspond to more advanced biological age across all biological aging measures, a positive linear 
effect suggests a higher number of live births is associated with a higher biological age. A positive quadratic 
effect would suggest a convex (or U-shaped) shape to the fitted curve, while a negative quadratic effect would 

Figure 3.   Associations between measures of chronological and biological age employed in the present study, 
National Health and Nutrition Examination Survey 1999–2010 (n = 4418). Numbers represent Pearson 
correlation coefficients. Note: *** p < 0.001; LM, Levine Method; HD, homeostatic dysregulation; KDM, 
Klemera-Doubal Method; AL, allostatic load.

https://osf.io/b2jft/
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suggest a concave shape to the fitted curve. As prior work suggests that costs of reproduction should be the most 
apparent after menopause44,66, models were estimated separately pre-menopausal and post-menopausal women. 
Equations for each regression are provided in ESM Text 1.

Values for Fig. 4 were generated using Stata through post-estimation marginal standardization commands 
for regressions adjusting for the distribution of other covariates67. The y-axes in these figures represent the extent 
to which chronological age deviates from biological age. For each measure, this presents the difference between 
observed biological age and biological age predicted by chronological age (i.e., the residual of each biological 
aging measure regressed onto the chronological age). In all four cases, positive values indicate aging acceleration 
(biological age > chronological age) while negative values indicate age deceleration (biological age < chronologi-
cal age).

Sensitivity analyses.  We conducted a series of follow-up regressions to probe the robustness of our pri-
mary analyses. First, we repeated the multiple linear regressions exactly as described above, including only 
chronological age as a covariate. This was done to ensure the relationship between variables included in our 

Figure 4.   Predicted values and 95% confidence intervals derived from primary models for Levine Method 
(LM) age acceleration (A), Homeostatic Dysregulation (HD) acceleration (B), Klemera-Doubal Method (KDM) 
age acceleration (C), and Allostatic Load (AL) age acceleration (D) among pre-menopausal women (orange 
lines) and post-menopausal women (blue lines), National Health and Nutrition Examination Survey (n = 4418). 
Note: Figure generated using marginal standardization adjusted for the distribution of age, BMI, FIPR, smoking, 
education, and race/ethnicity.
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primary analyses and biological age were so strong as to mask putative relationships between parity and biologi-
cal age. For example, in our sample BMI was significantly, positively correlated with LM and KDM (r = 0.29 and 
0.28, respectively; p < 0.001).

We then estimated a second and third set of sensitivity analyses, with time since last birth used to create 
additional model terms. We did not include time since last birth in our primary analyses for two reasons. First, 
models including time since last birth by default eliminate all nulliparous women, rendering us unable to calculate 
estimates for the effect of nuliparity for nulliparous women. Second, data on time since last birth were missing 
for a significant portion of our sample. In these models, we assessed the extent to which effects of parity may 
be durable and accumulate over time, or transient and only present in the postnatal period. To assess potential 
durable effects of parity on biological aging, years since last birth was calculated for women across all survey 
cycles as age of last live birth subtracted from current chronological age. To assess potential transient effects 
data on months since last birth was available for women sampled in the 2007–2008 and 2009–2010 cycles. We 
estimated one set of regressions exactly as described above for our primary analyses, and added terms for the 
main effect of years since last birth and interactions between years since last birth and parity (sensitivity analy-
sis 2). We then estimated additional set of regressions exactly as described above for our primary analyses and 
added terms for the main effect of months since last birth and interactions between months since last birth and 
parity (sensitivity analysis 3); however, this analysis was conducted in pre-menopausal women only since data 
on months since last birth were not available for any post-menopausal women.

Ethical approval.  All sampling procedures were approved through the National Center for Health Statistics 
(NCHS) Ethics Review Board and complied with all relevant human subjects protections and regulations, and 
all participants provide informed consent before sample collection and interviews.

Results
Differences between pre‑menopausal and post‑menopausal women.  Demographic differences 
and differences in biological age acceleration are presented in Table 1. When adjusting for demographic differ-
ences, pre-menopausal women exhibited significantly lower LM and KDM biological age acceleration relative to 
post-menopausal women.

Pre‑menopausal women.  The linear effect of number of live births and squared term, or quadratic effect, 
of live births was not significant in any primary model in pre-menopausal women (n = 2166; see Table 2; Fig. 4). 
Sample sizes for our sensitivity analyses controlling for chronological age only were slightly larger (n = 2686), as 

Table 2.   Multiple linear regression examining the durable and transient effects of number of live births on 
biological age acceleration for pre-menopausal women only, National Health and Nutrition Examination 
Survey 1999–2010. Values represent coefficient estimates and 95% confidence intervals. † Models were adjusted 
for the following variables: chronological age, body mass index, federal income-to-poverty ratio, smoking, 
education, and self-identified race/ethnicity. †† Model was adjusted for chronological age only. *p < 0.05, 
**p < 0.01, ***p < 0.001; values in bold represent effects significant after multiple comparison correction at 
α = (0.05/4) = 0.0125.

LM HD (log) KDM AL

Primary model (n = 2166)†

Live births (linear) − 0.24 (− 0.70, 0.22) 0.02 (− 0.03, 0.06) − 0.51 (− 1.53, 0.51) − 0.01 (− 0.02, 0.01)

Live births (quadratic) 0.04 (− 0.06, 0.13) − 0.01 (− 0.02, 0.004) 0.03 (− 0.18, 0.24) 0.001 (− 0.002, 0.003)

Sensitivity analysis 1 (n = 2686)††

Live births (linear) 0.03 (− 0.46, 0.52) 0.01 (− 0.03, 0.05) − 0.24 (− 1.15, 0.67) − 0.004 (− 0.02, 0.01)

Live births (quadratic) 0.06 (− 0.04, 0.17) − 0.003 (− 0.01, 0.01) 0.05 (− 0.13, 0.24) 0.002 (− 0.001, 0.01)

Sensitivity analysis 2 (n = 1617)†

Live births (linear) − 0.04 (− 1.66, 1.57) 0.08 (− 0.06, 0.22) − 1.34 (− 4.24, 1.56) − 0.04 (− 0.08, 0.01)

Live births (quadratic) 0.01 (− 0.26, 0.29) − 0.02 (− 0.04, 0.001) 0.10 (− 0.40, 0.60) 0.005 (− 0.002, 0.01)

Years since last birth 0.02 (− 0.14, 0.19) − 0.01 (0.02, 0.01) − 0.004 (− 0.36, 0.36) − 0.002 (− 0.01, 0.003)

Live births (linear) × years since 
last live birth 0.03 (− 0.10, 0.17) − 0.001 (− 0.01, 0.01) 0.02 (− 0.27, 0.32) 0.002 (− 0.003, 0.006)

Live births (quadratic) × years 
since last live birth − 0.01 (− 0.03, 0.02) 0.001 (− 0.002, 0.003) 0.006 (− 0.05, 0.06) − 0.0002 (− 0.0009, 0.0006)

Sensitivity analysis 3 (n = 107)†

Live births (linear) − 6.63 (− 13.19, − 0.07) * 0.25 (− 0.39, 0.90) − 2.70 (− 14.83, 9.43) − 0.06 (− 0.21, 0.08)

Live births (quadratic) 1.15 (0.14, 2.17) * − 0.02 (− 0.12, 0.08) 0.66 (− 1.49, 2.82) 0.02 (− 0.01, 0.04)

Months since last live birth − 1.07 (− 1.81, − 0.34) * 0.05 (− 0.04, 0.14) − 0.71 (− 2.06, 0.65) − 0.01 (− 0.02, 0.01)

Live births (linear) × months since 
last live birth 0.60 (0.14, 1.05) * − 0.04 (− 0.10, 0.02) 0.23 (− 0.72, 1.17) − 0.001 (− 0.01, 0.01)

Live births (quadratic) × months 
since last live birth − 0.09 (− 0.15, − 0.02) * 0.01 (− 0.003, 0.014) − 0.03 (− 0.18, 0.11) 0.0003 (− 0.001, 0.002)
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less participants were excluded due to missing covariate information. Similar to our primary analyses, the main 
effects of live births (both linear and quadratic terms) were not significant across all measures of biological age 
(Table 2). Repetition of these analyses in the primary analytical sample yielded the same pattern of results. Of 
the 2166 pre-menopausal women in our primary analyses, data on years since last live birth were available for 
1617. The average years since last live birth was 8.87 (SE = 0.19). After correcting for multiple comparisons, the 
main effect of years since last live birth was not significant in any model, nor were any of the interaction terms 
between years since last live birth and parity (Table 2).

Our sample size for analyses including months since last live birth (n = 107) was significantly limited by the 
fact that this subsample excluded all post-menopausal women, and excluded women sampled prior to this ques-
tion being added in the 2007–2008 cycle. On average, women with valid responses to this question gave birth 
10.7 months ago (SE = 0.63). After correcting for multiple comparisons, the main effects of months since last live 
birth and parity was not significant in any model, nor were any of the interaction terms between months since 
last live birth and parity (Table 2). These results should be interpreted with caution given the small sample size.

Post‑menopausal women.  Primary models in post-menopausal women revealed a significant linear 
effect of live births on biological aging indexed by LM, HD, and AL; the linear effect of live births on KDM 
was not significant after correction for multiple comparisons (n = 2252; Table 3). After correcting for multiple 
comparisons, the quadratic effect of parity on biological aging was significant for all measures but KDM. Sample 
sizes for our sensitivity analyses controlling for chronological age only were slightly larger (n = 2498). Similar 
trends were observed in the first set of sensitivity analyses, wherein the linear effect of live births was significantly 
associated with LM, HD, and AL. Moreover, the quadratic effect was significant for all four measures, giving rise 
to the anticipated U-shape for the overall relationship between parity and biological aging (shown in blue on 
Fig. 4). Repetition of these analyses in the primary analytical sample yielded the same pattern of results. Of the 
2252 post-menopausal women in our primary analyses, data on years since last birth were available for 1970. The 
average years since last birth was 36.09 (SE = 0.25). After correcting for multiple comparisons, the main effect of 
years since last live birth was not significant in any model, nor were any of the interaction terms between years 
since last live birth and parity (Table 3).

Discussion
We tested putative physiological costs of reproduction using four validated measures of biological age and system 
integrity among a nationally-representative sample of US women of reproductive and post-reproductive age. 
Based on epidemiological studies, we hypothesized a U-shaped relationship between parity and biological age. 
Controlling for lifestyle, health-related, and demographic factors, we found evidence that parity is associated 
with all four measures of biological age among post-menopausal women, although this relationship was not 
significant for KDM after controlling for multiple comparisons. The relationship between parity and biological 
age in post-menopausal women is most consistent with a U-shaped pattern, with biological age acceleration 
reaching a minimum at 3–4 live births and more pronounced aging at either extreme. Parity was not associated 
with any measure of biological aging among pre-menopausal women. Our study represents the first application 

Table 3.   Multiple linear regression examining the durable and transient effects of number of live births on 
biological age acceleration for post-menopausal women only, National Health and Nutrition Examination 
Survey 1999–2010. Values represent coefficient estimates and 95% confidence intervals. Notes: *p < 0.05, 
**p < 0.01, ***p < 0.001; values in bold represent effects significant after multiple comparison correction at 
α = (0.05/4) = 0.0125. † Models were adjusted for the following variables: chronological age, body mass index, 
federal income-to-poverty ratio, smoking, education, and self-identified race/ethnicity. †† Model was adjusted 
for chronological age only. *p < 0.05, **p < 0.01, ***p < 0.001; values in bold represent effects significant after 
multiple comparison correction at α = (0.05/4) = 0.0125.

LM HD (log) KDM AL

Primary model (n = 2252)†

Live births (linear) − 0.68 (− 1.11, − 0.25)** − 0.07 (− 0.11, − 0.04)*** − 1.07 (− 2.12, − 0.02)* − 0.02 (− 0.03, − 0.01)**

Live births (quadratic) 0.10 (0.03, 0.17)** 0.010 (0.004, 0.02)** 0.16 (− 0.01, 0.33) 0.002 (0.001, 0.004)*

Sensitivity analysis 1 (n = 2498)††

Live births (linear) − 0.80 (− 1.30, − 0.30)** − 0.08 (− 0.12, − 0.04)*** − 1.10 (− 2.10, − 0.10)* − 0.02 (− 0.03, − 0.01)**

Live births (quadratic) 0.17 (0.09, 0.25)*** 0.013 (0.007, 0.02)*** 0.23 (0.08, 0.39)** 0.004 (0.002, 0.01)***

Sensitivity analysis 2 (n = 1.970)†

Live births (linear) − 0.27 (− 2.76, 2.22) − 0.21 (− 0.45, 0.04) − 2.75 (− 8.56, 3.06) − 0.02 (− 0.10, 0.05)

Live births (quadratic) 0.06 (− 0.33, 0.46) 0.03 (− 0.01, 0.06) 0.50 (− 0.33, 1.32) − 0.005 (− 0.005, 0.015)

Years since last birth − 0.01 (− 0.11, 0.08) − 0.002 (− 0.01, 0.01) − 0.02 (− 0.32, 0.27) 0.001 (− 0.003, 0.004)

Live births (linear) × years 
since last live birth 0.005 (− 0.07, 0.08) 0.004 (− 0.002, 0.01) 0.07 (− 0.10, 0.24) 0.0003 (− 0.002, 0.002)

Live births (quad-
ratic) × years since last live 
birth

 − 0.001 (− 0.01, 0.01) − 0.001 (− 0.002, 0.000) − 0.01 (− 0.04, 0.01) − 0.0001 (− 0.0004, 0.0002)
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of biological age composites indexing system integrity (LM, HD, KDM, AL) to quantify costs of reproduction 
in both pre- and post-menopausal women, and may help elucidate some of the physiological processes bridging 
cellular and epidemiological findings relating parity with health and lifespan in women.

Our findings are broadly consistent with evolutionary theory68, studies of cellular aging and reproduction14, 
and epidemiological studies32,69. Despite evidence supporting costs of reproduction in women from each of these 
research domains, the physiological processes underlying such costs are still unclear. The composite measures 
used in our analysis were constructed using clinical markers of metabolic health (glucose), kidney and liver func-
tion (creatinine, albumin, alkaline phosphatase), anemia and/or red blood cell disorders (mean cell volume, red 
blood cell distribution width), and immune function and inflammation (CRP, lymphocyte percent, white blood 
cell count). Despite each composite measure weighting these clinical markers differently, we found evidence for a 
relationship between parity and accelerated biological aging in post-menopausal women using all four composite 
measures. This suggests that parity is associated with dysregulation across a broad range of physiological systems 
in post-menopausal women. Such broad physiological consequences of parity is consistent with the widespread 
metabolic, immunological, and endocrinological changes that accompany pregnancy and lactation, as well as 
the diverse disease risks that are both positively and negatively associated with parity in women26. Additional 
research focusing on the effect of parity on the individual clinical markers used in our composite measures will 
be an important next step in resolving the relative contributions of different physiological processes to parity-
induced biological age acceleration in women.

We also found evidence for a non-linear increase in biological age with parity, as evidenced by the quadratic 
term in our models. This is consistent with several large meta-analyses examining the relationship between parity 
and cardiovascular disease34 and all-cause mortality32. The fact that these and other large studies27,70 show clear 
non-linear curves similar to those reported here gives us confidence in the robustness of our findings. Never-
theless, the reasons for the U-shaped relationship between parity and health and mortality are still unclear. In 
some cases, higher mortality among nulliparous women may be tied to selection effects whereby women with 
long-term illnesses or health problems may be less likely to marry or bear children70. Higher mortality among 
women bearing one child may similarly relate to long-term health issues, including those related to their first 
pregnancy70. Women with no children or only one child may also experience lower levels of social support71, 
which could have negative consequences on health later on in life72. Additional work to help disentangle the 
social and environmental factors that are associated with nulliparity or single parity is warranted.

Another explanation for the non-linear relationship between parity and biological age described here may 
include the interaction of countervailing physiological changes on our measures of biological aging. For example, 
risk increases with parity for many (i.e. CVD, diabetes, kidney cancer, hypertension, gallbladder cancer), but 
not all diseases (i.e. respiratory disease, breast, ovarian, endometrial cancer)26,31. The non-linear relationship we 
observe between parity and biological age may therefore reflect the cumulative effect of both beneficial and harm-
ful physiological accommodations necessary for reproduction in women, no doubt also mediated by individual 
risk factors tied to genetic variation, environment, or lifestyle.

That parity was not associated with biological age in pre-menopausal women, along with the finding that time 
since last birth did not predict biological age acceleration in either pre- or post-menopausal women supports 
the hypothesis that the effects of parity are durable, and not simply short-term physiological changes associated 
with pregnancy and breastfeeding. The reasons for our findings being limited to post-menopausal women are 
unclear, but are in accordance with research in both historical populations66,73 and contemporary epidemiological 
studies, where the relationship between parity and disease risk appears more commonly among older cohorts70,74.

It remains possible that parity does exert durable effects prior to menopause, but these effects are too benign 
to be detected by clinical based measures of biological aging. Notably, our findings in pre-menopausal are in 
contrast to studies using measures of cellular aging, such as leukocyte telomere length and epigenetic age, which 
report evidence for a relationship between parity and accelerated cellular aging even among relatively young 
women14,36,37. Indeed, Pollack et al.13 found evidence for accelerated aging in response to parity in the form of 
shortened leukocyte telomere length in women 20–44 from the same dataset used here. Thus, cellular measures 
may provide early indicators of health impacts of parity that may only be detectable in post-reproductive years 
using clinical measures. Additional longitudinal studies investigating how these cellular measures of biological 
aging predict composite measures of biological aging as individuals age are therefore warranted.

The reproductive-cell cycle theory of aging offers a second potential explanation for parity-biological age 
acceleration relationships being present in post-, but not pre-menopausal, women. According to this theory, 
the protective forces acting to ensure survival during the reproductive stage of the lifespan are diminished in 
the post-menopausal period44. Changes in hypothalamic-pituitary–gonadal (HPG) axis functioning associated 
with menopause are proposed as the proximate cause of the increased physiological dysregulation observed in 
women in their post-reproductive stage. It is hypothesized that the combination of higher levels of hypotha-
lamic and pituitary hormones, coupled with decreases in ovarian hormone production, together contribute to 
cell-cycle changes that then manifest as morbidity and mortality. Epidemiological and experimental lines of 
evidence support this hypothesis. Women who experience later menopause are at lower risk of cardiovascular 
disease, osteoporosis, and cognitive decline75, and menopausal status independent of age predicts biological age 
acceleration76, as was also found in the present study. Premenopausal women who undergo an oophorectomy 
(surgical removal of one or both ovaries) are at higher risk of these same outcomes77,78, suggesting the role of HPG 
axis outputs in modulating these age-related phenotypes. Experimental work manipulating ovarian hormone lev-
els in animal models and observations of women taking hormone replacement therapy also find less age-related 
decline in hormonal milieus more closely approximating that of the reproductive stage (reviewed in44). However, 
it remains unclear precisely how changes in ovarian hormones associated with menopause contribute to cellular 
instability and aging. Thus, future work should explore different possible compensatory mechanisms buffering 
pre-menopausal from putative accelerated biological aging induced by parity and reproductive investment.
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Limitations
The fact that NHANES is cross-sectional rather than longitudinal in design contributes to two limitations in 
our study. First, its cross-sectional nature does not allow us to draw conclusions about causal relationships (or 
lack thereof). It is possible that accelerated biological aging increases reproductive effort in women, or a third 
unmeasured variable increases both biological aging and reproductive effort. This does not appear to be the case 
here, however, since there was no relationship between parity and biological age in pre-menopausal women. In 
the absence of longitudinal sampling, we also cannot be certain that biomarkers measured in this cross-sectional 
sample are not also representative of transient states unrelated to parity or reproduction. For example, it is pos-
sible that some participants could have been experiencing mild infections during MEC examinations, leading 
to altered clinical measures of immune function. Though this could contribute to imprecision in our biological 
aging measures, such imprecision would not be systematic and thus we would not expect it to significantly affect 
the present study’s findings.

Another limitation is our reliance on the relatively crude measures of reproductive effort in women. We were 
restricted to a measure of life births, but do not have access to data on miscarriages or aborted pregnancies, 
which could also be associated with costs of reproduction. We also lack information on breastfeeding, which is 
energetically costly in women79. Nevertheless, the fact that we do dectect a strong and robust signal of accelerated 
biological aging with parity in post-menopausal women implies that parity is adequate to capture important 
health-related costs in this population. Given the importance of hormones like estrogen in both reproduction 
and women’s health, it may also be important to include current use of oral contraceptives or hormone replace-
ment therapy. Although NHANES collects data on lifetime patterns of hormonal contraceptive and hormone 
replacement therapy, it does not collect data on current use. Future studies assessing potential impacts of parity 
on biological age acceleration should thus consider effects of current hormone-altering medication use.

Finally, because data were collected in the United States, it is unknown whether similar patterns would be 
observed outside the context of WEIRD (Western, Educated, Industrialized, Rich, and Democratic)80 samples. 
WEIRD and non-WEIRD countries are characterized by significantly different activity patterns, nutrition, infec-
tious disease ecology, and morbidity and mortality81, all of which could shape costs of reproduction. Whereas 
some studies have indeed examined links between parity and aging in non-Western settings14,82, more research 
is necessary to better catalogue and understand cross-cultural variation in costs of reproduction in women.

Conclusions
We analyzed links between parity and different clinical-based measures of biological aging using a large, nation-
ally-representative epidemiological sample of pre- and post-menopausal women in the United States. Our results 
are consistent with research in both historical populations and large epidemiological studies suggesting a non-
linear relationship between parity and health outcomes. Furthermore, our findings suggest these effects are 
only evident after menopause when indexed using these composite measures. This contrasts with measures 
with cellular aging, which appear to capture costs of reproduction in pre-menopausal women, suggesting the 
protective forces that work to prevent clinical level dysregulation induced by parity during the reproductive stage 
may be insufficient to dampen molecular level changes. Longitudinal studies are critically needed to evaluate 
molecular-based and clinical-based indices of biological age acceleration in tandem to better understand how 
costs of reproduction in women may manifest over time.

Data availability
All script and data files that accompany this paper can be found at https​://osf.io/b2jft​/ (https​://doi.org/10.17605​
/OSF.IO/B2JFT​).
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